Correction: TGF-β/Smad3 Stimulates Stem Cell/Developmental Gene Expression and Vascular Smooth Muscle Cell De-Differentiation
نویسندگان
چکیده
Atherosclerotic-associated diseases are the leading cause of death in the United States. Despite recent progress, interventional treatments for atherosclerosis can be complicated by restenosis resulting from neo-intimal hyperplasia. We have previously demonstrated that TGF-β and its downstream signaling protein Smad3 ∶ 1) are up-regulated following vascular injury, 2) together drive smooth muscle cell (SMC) proliferation and migration and 3) enhance the development of intimal hyperplasia. In order to determine a mechanism through which TGF-β/Smad3 promote these effects, Affymetrix gene expression arrays were performed on primary rat SMCs infected with Smad3 and stimulated with TGF-β or infected with GFP alone. More than 200 genes were differentially expressed (>2.0 fold change, p<0.05) in TGF-β/Smad3 stimulated SMCs. We then performed GO term enrichment analysis using the DAVID bioinformatics database and found that TGF-β/Smad3 activated the expression of multiple genes related to either development or cell differentiation, several of which have been shown to be associated with multipotent stem or progenitor cells. Quantitative real-time PCR confirmed up-regulation of several developmental genes including FGF1, NGF, and Wnt11 (by 2.5, 6 and 7 fold, respectively) as well as stem/progenitor cell associated genes CD34 and CXCR4 (by 10 and 45 fold, respectively). In addition, up-regulation of these factors at protein levels were also confirmed by Western blotting, or by immunocytochemistry (performed for CXCR4 and NGF). Finally, TGF-β/Smad3 down regulated transcription of SMC contractile genes as well as protein production of smooth muscle alpha actin, calponin, and smooth muscle myosin heavy chain. These combined results suggest that TGF-β/Smad3 stimulation drives SMCs to a phenotypically altered state of de-differentiation through the up-regulation of developmental related genes.
منابع مشابه
TGF-β and Smad3 modulate PI3K/Akt signaling pathway in vascular smooth muscle cells.
Transforming growth factor-β (TGF-β) is upregulated at the time of arterial injury; however, the mechanism through which TGF-β enhances the development of intimal hyperplasia is not clear. Recent studies from our laboratory suggest that in the presence of elevated levels of Smad3, TGF-β stimulates smooth muscle cell (SMC) proliferation. This is a novel phenomenon in that TGF-β has traditionally...
متن کاملTransforming growth factor-beta promotes recruitment of bone marrow cells and bone marrow-derived mesenchymal stem cells through stimulation of MCP-1 production in vascular smooth muscle cells.
Bone marrow-derived progenitor cells have recently been shown to be involved in the development of intimal hyperplasia after vascular injury. Transforming growth factor-beta (TGF-beta) has profound stimulatory effects on intimal hyperplasia, but it is unknown whether these effects involve progenitor cell recruitment. In this study we found that although TGF-beta had no direct effect on progenit...
متن کاملRunx2/Smad3 complex negatively regulates TGF-β-induced connective tissue growth factor gene expression in vascular smooth muscle cells.
AIM Connective tissue growth factor (CTGF), a direct target gene of transforming growth factor-β (TGF-β) signaling, plays an important role in the development of atherosclerosis. We previously showed that Runx2, a key transcription factor in osteoblast differentiation, regulates osteogenic conversion and dedifferentiation of vascular smooth muscle cells (VSMCs). In this study, we investigated t...
متن کاملCorrection: TGF-β Prevents Phosphate-Induced Osteogenesis through Inhibition of BMP and Wnt/β-Catenin Pathways
BACKGROUND Transforming growth factor-β (TGF-β) is a key cytokine during differentiation of mesenchymal stem cells (MSC) into vascular smooth muscle cells (VSMC). High phosphate induces a phenotypic transformation of vascular smooth muscle cells (VSMC) into osteogenic-like cells. This study was aimed to evaluate signaling pathways involved during VSMC differentiation of MSC in presence or not o...
متن کاملTGF-beta through Smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation.
The objective of this study was to better understand the role of transforming growth factor-beta (TGF-beta) and its primary signaling protein Smad3 in the development of intimal hyperplasia. Male Sprague-Dawley rats underwent left carotid balloon injury followed by intra-arterial infection with adenovirus-expressing Smad3 (AdSmad3). In uninfected injured arteries, endogenous Smad3 was upregulat...
متن کامل